0&&console.error("THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.")}},raycast:function(e,t){let n;let r=this.geometry,o=this.material,s=this.matrixWorld;if(void 0!==o&&(null===r.boundingSphere&&r.computeBoundingSphere(),$4c09f4f24c57a7cd$var$_sphere.copy(r.boundingSphere),$4c09f4f24c57a7cd$var$_sphere.applyMatrix4(s),!1!==e.ray.intersectsSphere($4c09f4f24c57a7cd$var$_sphere))){if($4c09f4f24c57a7cd$var$_inverseMatrix.copy(s).invert(),$4c09f4f24c57a7cd$var$_ray.copy(e.ray).applyMatrix4($4c09f4f24c57a7cd$var$_inverseMatrix),null!==r.boundingBox&&!1===$4c09f4f24c57a7cd$var$_ray.intersectsBox(r.boundingBox))return;if(r.isBufferGeometry){let s=r.index,a=r.attributes.position,l=r.morphAttributes.position,d=r.morphTargetsRelative,c=r.attributes.uv,u=r.attributes.uv2,h=r.groups,_=r.drawRange;if(null!==s){if(Array.isArray(o))for(let r=0,p=h.length;r0&&(s=c);for(let r=0,c=d.length;r0?1:-1,c.push(T.x,T.y,T.z),u.push(l/m),u.push(1-s/g),A+=1}}for(let e=0;e0&&(t.defines=this.defines),t.vertexShader=this.vertexShader,t.fragmentShader=this.fragmentShader;let n={};for(let e in this.extensions)!0===this.extensions[e]&&(n[e]=!0);return Object.keys(n).length>0&&(t.extensions=n),t},$4c09f4f24c57a7cd$export$79f141de891a5fed.prototype=Object.assign(Object.create($4c09f4f24c57a7cd$export$e4dd07dff30cc924.prototype),{constructor:$4c09f4f24c57a7cd$export$79f141de891a5fed,isCamera:!0,copy:function(e,t){return $4c09f4f24c57a7cd$export$e4dd07dff30cc924.prototype.copy.call(this,e,t),this.matrixWorldInverse.copy(e.matrixWorldInverse),this.projectionMatrix.copy(e.projectionMatrix),this.projectionMatrixInverse.copy(e.projectionMatrixInverse),this},getWorldDirection:function(e){void 0===e&&(console.warn("THREE.Camera: .getWorldDirection() target is now required"),e=new $4c09f4f24c57a7cd$export$64b5c384219d3699),this.updateWorldMatrix(!0,!1);let t=this.matrixWorld.elements;return e.set(-t[8],-t[9],-t[10]).normalize()},updateMatrixWorld:function(e){$4c09f4f24c57a7cd$export$e4dd07dff30cc924.prototype.updateMatrixWorld.call(this,e),this.matrixWorldInverse.copy(this.matrixWorld).invert()},updateWorldMatrix:function(e,t){$4c09f4f24c57a7cd$export$e4dd07dff30cc924.prototype.updateWorldMatrix.call(this,e,t),this.matrixWorldInverse.copy(this.matrixWorld).invert()},clone:function(){return new this.constructor().copy(this)}}),$4c09f4f24c57a7cd$export$74e4ae24825f68d7.prototype=Object.assign(Object.create($4c09f4f24c57a7cd$export$79f141de891a5fed.prototype),{constructor:$4c09f4f24c57a7cd$export$74e4ae24825f68d7,isPerspectiveCamera:!0,copy:function(e,t){return $4c09f4f24c57a7cd$export$79f141de891a5fed.prototype.copy.call(this,e,t),this.fov=e.fov,this.zoom=e.zoom,this.near=e.near,this.far=e.far,this.focus=e.focus,this.aspect=e.aspect,this.view=null===e.view?null:Object.assign({},e.view),this.filmGauge=e.filmGauge,this.filmOffset=e.filmOffset,this},setFocalLength:function(e){let t=.5*this.getFilmHeight()/e;this.fov=2*$4c09f4f24c57a7cd$export$380958644dbbc22b.RAD2DEG*Math.atan(t),this.updateProjectionMatrix()},getFocalLength:function(){let e=Math.tan(.5*$4c09f4f24c57a7cd$export$380958644dbbc22b.DEG2RAD*this.fov);return .5*this.getFilmHeight()/e},getEffectiveFOV:function(){return 2*$4c09f4f24c57a7cd$export$380958644dbbc22b.RAD2DEG*Math.atan(Math.tan(.5*$4c09f4f24c57a7cd$export$380958644dbbc22b.DEG2RAD*this.fov)/this.zoom)},getFilmWidth:function(){return this.filmGauge*Math.min(this.aspect,1)},getFilmHeight:function(){return this.filmGauge/Math.max(this.aspect,1)},setViewOffset:function(e,t,n,r,o,s){this.aspect=e/t,null===this.view&&(this.view={enabled:!0,fullWidth:1,fullHeight:1,offsetX:0,offsetY:0,width:1,height:1}),this.view.enabled=!0,this.view.fullWidth=e,this.view.fullHeight=t,this.view.offsetX=n,this.view.offsetY=r,this.view.width=o,this.view.height=s,this.updateProjectionMatrix()},clearViewOffset:function(){null!==this.view&&(this.view.enabled=!1),this.updateProjectionMatrix()},updateProjectionMatrix:function(){let e=this.near,t=e*Math.tan(.5*$4c09f4f24c57a7cd$export$380958644dbbc22b.DEG2RAD*this.fov)/this.zoom,n=2*t,r=this.aspect*n,o=-.5*r,s=this.view;if(null!==this.view&&this.view.enabled){let e=s.fullWidth,a=s.fullHeight;o+=s.offsetX*r/e,t-=s.offsetY*n/a,r*=s.width/e,n*=s.height/a}let a=this.filmOffset;0!==a&&(o+=e*a/this.getFilmWidth()),this.projectionMatrix.makePerspective(o,o+r,t,t-n,e,this.far),this.projectionMatrixInverse.copy(this.projectionMatrix).invert()},toJSON:function(e){let t=$4c09f4f24c57a7cd$export$e4dd07dff30cc924.prototype.toJSON.call(this,e);return t.object.fov=this.fov,t.object.zoom=this.zoom,t.object.near=this.near,t.object.far=this.far,t.object.focus=this.focus,t.object.aspect=this.aspect,null!==this.view&&(t.object.view=Object.assign({},this.view)),t.object.filmGauge=this.filmGauge,t.object.filmOffset=this.filmOffset,t}});const $4c09f4f24c57a7cd$var$fov=90,$4c09f4f24c57a7cd$var$aspect=1;function $4c09f4f24c57a7cd$export$d0cdd0bd804995de(e,t,n){if($4c09f4f24c57a7cd$export$e4dd07dff30cc924.call(this),this.type="CubeCamera",!0!==n.isWebGLCubeRenderTarget){console.error("THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.");return}this.renderTarget=n;let r=new $4c09f4f24c57a7cd$export$74e4ae24825f68d7($4c09f4f24c57a7cd$var$fov,$4c09f4f24c57a7cd$var$aspect,e,t);r.layers=this.layers,r.up.set(0,-1,0),r.lookAt(new $4c09f4f24c57a7cd$export$64b5c384219d3699(1,0,0)),this.add(r);let o=new $4c09f4f24c57a7cd$export$74e4ae24825f68d7($4c09f4f24c57a7cd$var$fov,$4c09f4f24c57a7cd$var$aspect,e,t);o.layers=this.layers,o.up.set(0,-1,0),o.lookAt(new $4c09f4f24c57a7cd$export$64b5c384219d3699(-1,0,0)),this.add(o);let s=new $4c09f4f24c57a7cd$export$74e4ae24825f68d7($4c09f4f24c57a7cd$var$fov,$4c09f4f24c57a7cd$var$aspect,e,t);s.layers=this.layers,s.up.set(0,0,1),s.lookAt(new $4c09f4f24c57a7cd$export$64b5c384219d3699(0,1,0)),this.add(s);let a=new $4c09f4f24c57a7cd$export$74e4ae24825f68d7($4c09f4f24c57a7cd$var$fov,$4c09f4f24c57a7cd$var$aspect,e,t);a.layers=this.layers,a.up.set(0,0,-1),a.lookAt(new $4c09f4f24c57a7cd$export$64b5c384219d3699(0,-1,0)),this.add(a);let l=new $4c09f4f24c57a7cd$export$74e4ae24825f68d7($4c09f4f24c57a7cd$var$fov,$4c09f4f24c57a7cd$var$aspect,e,t);l.layers=this.layers,l.up.set(0,-1,0),l.lookAt(new $4c09f4f24c57a7cd$export$64b5c384219d3699(0,0,1)),this.add(l);let d=new $4c09f4f24c57a7cd$export$74e4ae24825f68d7($4c09f4f24c57a7cd$var$fov,$4c09f4f24c57a7cd$var$aspect,e,t);d.layers=this.layers,d.up.set(0,-1,0),d.lookAt(new $4c09f4f24c57a7cd$export$64b5c384219d3699(0,0,-1)),this.add(d),this.update=function(e,t){null===this.parent&&this.updateMatrixWorld();let c=e.xr.enabled,u=e.getRenderTarget();e.xr.enabled=!1;let h=n.texture.generateMipmaps;n.texture.generateMipmaps=!1,e.setRenderTarget(n,0),e.render(t,r),e.setRenderTarget(n,1),e.render(t,o),e.setRenderTarget(n,2),e.render(t,s),e.setRenderTarget(n,3),e.render(t,a),e.setRenderTarget(n,4),e.render(t,l),n.texture.generateMipmaps=h,e.setRenderTarget(n,5),e.render(t,d),e.setRenderTarget(u),e.xr.enabled=c}}function $4c09f4f24c57a7cd$export$ee2e5a18258a4049(e,t,n,r,o,s,a,l,d,c){e=void 0!==e?e:[],t=void 0!==t?t:$4c09f4f24c57a7cd$export$8759762a6477f2c4,a=void 0!==a?a:$4c09f4f24c57a7cd$export$7c67423a5ee6f5eb,$4c09f4f24c57a7cd$export$5431306cf43de24a.call(this,e,t,n,r,o,s,a,l,d,c),this.flipY=!1,this._needsFlipEnvMap=!0}function $4c09f4f24c57a7cd$export$ac386671d651941e(e,t,n){Number.isInteger(t)&&(console.warn("THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )"),t=n),$4c09f4f24c57a7cd$export$3c052beb2e51e23f.call(this,e,e,t),t=t||{},this.texture=new $4c09f4f24c57a7cd$export$ee2e5a18258a4049(void 0,t.mapping,t.wrapS,t.wrapT,t.magFilter,t.minFilter,t.format,t.type,t.anisotropy,t.encoding),this.texture._needsFlipEnvMap=!1}function $4c09f4f24c57a7cd$export$b691f601014eabe1(e,t,n,r,o,s,a,l,d,c,u,h){$4c09f4f24c57a7cd$export$5431306cf43de24a.call(this,null,s,a,l,d,c,r,o,u,h),this.image={data:e||null,width:t||1,height:n||1},this.magFilter=void 0!==d?d:$4c09f4f24c57a7cd$export$727aa5ec3fe39bf0,this.minFilter=void 0!==c?c:$4c09f4f24c57a7cd$export$727aa5ec3fe39bf0,this.generateMipmaps=!1,this.flipY=!1,this.unpackAlignment=1,this.needsUpdate=!0}$4c09f4f24c57a7cd$export$d0cdd0bd804995de.prototype=Object.create($4c09f4f24c57a7cd$export$e4dd07dff30cc924.prototype),$4c09f4f24c57a7cd$export$d0cdd0bd804995de.prototype.constructor=$4c09f4f24c57a7cd$export$d0cdd0bd804995de,$4c09f4f24c57a7cd$export$ee2e5a18258a4049.prototype=Object.create($4c09f4f24c57a7cd$export$5431306cf43de24a.prototype),$4c09f4f24c57a7cd$export$ee2e5a18258a4049.prototype.constructor=$4c09f4f24c57a7cd$export$ee2e5a18258a4049,$4c09f4f24c57a7cd$export$ee2e5a18258a4049.prototype.isCubeTexture=!0,Object.defineProperty($4c09f4f24c57a7cd$export$ee2e5a18258a4049.prototype,"images",{get:function(){return this.image},set:function(e){this.image=e}}),$4c09f4f24c57a7cd$export$ac386671d651941e.prototype=Object.create($4c09f4f24c57a7cd$export$3c052beb2e51e23f.prototype),$4c09f4f24c57a7cd$export$ac386671d651941e.prototype.constructor=$4c09f4f24c57a7cd$export$ac386671d651941e,$4c09f4f24c57a7cd$export$ac386671d651941e.prototype.isWebGLCubeRenderTarget=!0,$4c09f4f24c57a7cd$export$ac386671d651941e.prototype.fromEquirectangularTexture=function(e,t){this.texture.type=t.type,this.texture.format=$4c09f4f24c57a7cd$export$3f8bb04b555a363c,this.texture.encoding=t.encoding,this.texture.generateMipmaps=t.generateMipmaps,this.texture.minFilter=t.minFilter,this.texture.magFilter=t.magFilter;let n={uniforms:{tEquirect:{value:null}},vertexShader:`
varying vec3 vWorldDirection;
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include
#include
}
`,fragmentShader:`
uniform sampler2D tEquirect;
varying vec3 vWorldDirection;
#include
void main() {
vec3 direction = normalize( vWorldDirection );
vec2 sampleUV = equirectUv( direction );
gl_FragColor = texture2D( tEquirect, sampleUV );
}
`},r=new $4c09f4f24c57a7cd$export$ab3456a079aa7d80(5,5,5),o=new $4c09f4f24c57a7cd$export$83c7d75d550a8b0d({name:"CubemapFromEquirect",uniforms:$4c09f4f24c57a7cd$var$cloneUniforms(n.uniforms),vertexShader:n.vertexShader,fragmentShader:n.fragmentShader,side:$4c09f4f24c57a7cd$export$d9f0486e75b5ace,blending:$4c09f4f24c57a7cd$export$63b8d6b580fc65ba});o.uniforms.tEquirect.value=t;let s=new $4c09f4f24c57a7cd$export$e176487c05830cc5(r,o),a=t.minFilter;t.minFilter===$4c09f4f24c57a7cd$export$5d8599b6a933fb1b&&(t.minFilter=$4c09f4f24c57a7cd$export$8a72f490b25c56c8);let l=new $4c09f4f24c57a7cd$export$d0cdd0bd804995de(1,10,this);return l.update(e,s),t.minFilter=a,s.geometry.dispose(),s.material.dispose(),this},$4c09f4f24c57a7cd$export$ac386671d651941e.prototype.clear=function(e,t,n,r){let o=e.getRenderTarget();for(let o=0;o<6;o++)e.setRenderTarget(this,o),e.clear(t,n,r);e.setRenderTarget(o)},$4c09f4f24c57a7cd$export$b691f601014eabe1.prototype=Object.create($4c09f4f24c57a7cd$export$5431306cf43de24a.prototype),$4c09f4f24c57a7cd$export$b691f601014eabe1.prototype.constructor=$4c09f4f24c57a7cd$export$b691f601014eabe1,$4c09f4f24c57a7cd$export$b691f601014eabe1.prototype.isDataTexture=!0;const $4c09f4f24c57a7cd$var$_sphere$1=new $4c09f4f24c57a7cd$export$805e8b72413ccaba,$4c09f4f24c57a7cd$var$_vector$5=new $4c09f4f24c57a7cd$export$64b5c384219d3699;class $4c09f4f24c57a7cd$export$35efe6f4c85463d2{constructor(e,t,n,r,o,s){this.planes=[void 0!==e?e:new $4c09f4f24c57a7cd$export$7ff5ac152ef991b0,void 0!==t?t:new $4c09f4f24c57a7cd$export$7ff5ac152ef991b0,void 0!==n?n:new $4c09f4f24c57a7cd$export$7ff5ac152ef991b0,void 0!==r?r:new $4c09f4f24c57a7cd$export$7ff5ac152ef991b0,void 0!==o?o:new $4c09f4f24c57a7cd$export$7ff5ac152ef991b0,void 0!==s?s:new $4c09f4f24c57a7cd$export$7ff5ac152ef991b0]}set(e,t,n,r,o,s){let a=this.planes;return a[0].copy(e),a[1].copy(t),a[2].copy(n),a[3].copy(r),a[4].copy(o),a[5].copy(s),this}clone(){return new this.constructor().copy(this)}copy(e){let t=this.planes;for(let n=0;n<6;n++)t[n].copy(e.planes[n]);return this}setFromProjectionMatrix(e){let t=this.planes,n=e.elements,r=n[0],o=n[1],s=n[2],a=n[3],l=n[4],d=n[5],c=n[6],u=n[7],h=n[8],_=n[9],p=n[10],f=n[11],m=n[12],g=n[13],y=n[14],b=n[15];return t[0].setComponents(a-r,u-l,f-h,b-m).normalize(),t[1].setComponents(a+r,u+l,f+h,b+m).normalize(),t[2].setComponents(a+o,u+d,f+_,b+g).normalize(),t[3].setComponents(a-o,u-d,f-_,b-g).normalize(),t[4].setComponents(a-s,u-c,f-p,b-y).normalize(),t[5].setComponents(a+s,u+c,f+p,b+y).normalize(),this}intersectsObject(e){let t=e.geometry;return null===t.boundingSphere&&t.computeBoundingSphere(),$4c09f4f24c57a7cd$var$_sphere$1.copy(t.boundingSphere).applyMatrix4(e.matrixWorld),this.intersectsSphere($4c09f4f24c57a7cd$var$_sphere$1)}intersectsSprite(e){return $4c09f4f24c57a7cd$var$_sphere$1.center.set(0,0,0),$4c09f4f24c57a7cd$var$_sphere$1.radius=.7071067811865476,$4c09f4f24c57a7cd$var$_sphere$1.applyMatrix4(e.matrixWorld),this.intersectsSphere($4c09f4f24c57a7cd$var$_sphere$1)}intersectsSphere(e){let t=this.planes,n=e.center,r=-e.radius;for(let e=0;e<6;e++){let o=t[e].distanceToPoint(n);if(o0?e.max.x:e.min.x,$4c09f4f24c57a7cd$var$_vector$5.y=r.normal.y>0?e.max.y:e.min.y,$4c09f4f24c57a7cd$var$_vector$5.z=r.normal.z>0?e.max.z:e.min.z,0>r.distanceToPoint($4c09f4f24c57a7cd$var$_vector$5))return!1}return!0}containsPoint(e){let t=this.planes;for(let n=0;n<6;n++)if(0>t[n].distanceToPoint(e))return!1;return!0}}function $4c09f4f24c57a7cd$var$WebGLAnimation(){let e=null,t=!1,n=null,r=null;function o(t,s){n(t,s),r=e.requestAnimationFrame(o)}return{start:function(){!0!==t&&null!==n&&(r=e.requestAnimationFrame(o),t=!0)},stop:function(){e.cancelAnimationFrame(r),t=!1},setAnimationLoop:function(e){n=e},setContext:function(t){e=t}}}function $4c09f4f24c57a7cd$var$WebGLAttributes(e,t){let n=t.isWebGL2,r=new WeakMap;function o(t,r){let o=t.array,s=t.usage,a=e.createBuffer();e.bindBuffer(r,a),e.bufferData(r,o,s),t.onUploadCallback();let l=5126;return o instanceof Float32Array?l=5126:o instanceof Float64Array?console.warn("THREE.WebGLAttributes: Unsupported data buffer format: Float64Array."):o instanceof Uint16Array?t.isFloat16BufferAttribute?n?l=5131:console.warn("THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2."):l=5123:o instanceof Int16Array?l=5122:o instanceof Uint32Array?l=5125:o instanceof Int32Array?l=5124:o instanceof Int8Array?l=5120:o instanceof Uint8Array&&(l=5121),{buffer:a,type:l,bytesPerElement:o.BYTES_PER_ELEMENT,version:t.version}}function s(t,r,o){let s=r.array,a=r.updateRange;e.bindBuffer(o,t),-1===a.count?e.bufferSubData(o,0,s):(n?e.bufferSubData(o,a.offset*s.BYTES_PER_ELEMENT,s,a.offset,a.count):e.bufferSubData(o,a.offset*s.BYTES_PER_ELEMENT,s.subarray(a.offset,a.offset+a.count)),a.count=-1)}return{get:function(e){return e.isInterleavedBufferAttribute&&(e=e.data),r.get(e)},remove:function(t){t.isInterleavedBufferAttribute&&(t=t.data);let n=r.get(t);n&&(e.deleteBuffer(n.buffer),r.delete(t))},update:function(e,t){if(e.isGLBufferAttribute){let t=r.get(e);(!t||t.version 0.0 ) {\n distanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n }\n return distanceFalloff;\n#else\n if( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n return pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n }\n return 1.0;\n#endif\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n return RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n float fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n return ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nvec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {\n float fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );\n vec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;\n return Fr * fresnel + F0;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n float a2 = pow2( alpha );\n float gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n float gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n return 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n float a2 = pow2( alpha );\n float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n return 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n float a2 = pow2( alpha );\n float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n return RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n float alpha = pow2( roughness );\n vec3 halfDir = normalize( incidentLight.direction + viewDir );\n float dotNL = saturate( dot( normal, incidentLight.direction ) );\n float dotNV = saturate( dot( normal, viewDir ) );\n float dotNH = saturate( dot( normal, halfDir ) );\n float dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n vec3 F = F_Schlick( specularColor, dotLH );\n float G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n float D = D_GGX( alpha, dotNH );\n return F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n const float LUT_SIZE = 64.0;\n const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n const float LUT_BIAS = 0.5 / LUT_SIZE;\n float dotNV = saturate( dot( N, V ) );\n vec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n uv = uv * LUT_SCALE + LUT_BIAS;\n return uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n float l = length( f );\n return max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n float x = dot( v1, v2 );\n float y = abs( x );\n float a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n float b = 3.4175940 + ( 4.1616724 + y ) * y;\n float v = a / b;\n float theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n return cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n vec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n vec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n vec3 lightNormal = cross( v1, v2 );\n if( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n vec3 T1, T2;\n T1 = normalize( V - N * dot( V, N ) );\n T2 = - cross( N, T1 );\n mat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n vec3 coords[ 4 ];\n coords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n coords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n coords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n coords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n coords[ 0 ] = normalize( coords[ 0 ] );\n coords[ 1 ] = normalize( coords[ 1 ] );\n coords[ 2 ] = normalize( coords[ 2 ] );\n coords[ 3 ] = normalize( coords[ 3 ] );\n vec3 vectorFormFactor = vec3( 0.0 );\n vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n float result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n return vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n float dotNV = saturate( dot( normal, viewDir ) );\n vec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n return specularColor * brdf.x + brdf.y;\n}\nvoid BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n vec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );\n vec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n vec3 FssEss = F * brdf.x + brdf.y;\n float Ess = brdf.x + brdf.y;\n float Ems = 1.0 - Ess;\n vec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619; vec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n singleScatter += FssEss;\n multiScatter += Fms * Ems;\n}\nfloat G_BlinnPhong_Implicit( ) {\n return 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n float dotNH = saturate( dot( geometry.normal, halfDir ) );\n float dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n vec3 F = F_Schlick( specularColor, dotLH );\n float G = G_BlinnPhong_Implicit( );\n float D = D_BlinnPhong( shininess, dotNH );\n return F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n return ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n return sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie(float roughness, float NoH) {\n float invAlpha = 1.0 / roughness;\n float cos2h = NoH * NoH;\n float sin2h = max(1.0 - cos2h, 0.0078125); return (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI);\n}\nfloat V_Neubelt(float NoV, float NoL) {\n return saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV)));\n}\nvec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n vec3 N = geometry.normal;\n vec3 V = geometry.viewDir;\n vec3 H = normalize( V + L );\n float dotNH = saturate( dot( N, H ) );\n return specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif",$4c09f4f24c57a7cd$var$bumpmap_pars_fragment="#ifdef USE_BUMPMAP\n uniform sampler2D bumpMap;\n uniform float bumpScale;\n vec2 dHdxy_fwd() {\n vec2 dSTdx = dFdx( vUv );\n vec2 dSTdy = dFdy( vUv );\n float Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n float dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n float dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n return vec2( dBx, dBy );\n }\n vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n vec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n vec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n vec3 vN = surf_norm;\n vec3 R1 = cross( vSigmaY, vN );\n vec3 R2 = cross( vN, vSigmaX );\n float fDet = dot( vSigmaX, R1 );\n fDet *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n return normalize( abs( fDet ) * surf_norm - vGrad );\n }\n#endif",$4c09f4f24c57a7cd$var$clipping_planes_fragment="#if NUM_CLIPPING_PLANES > 0\n vec4 plane;\n #pragma unroll_loop_start\n for ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n plane = clippingPlanes[ i ];\n if ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n }\n #pragma unroll_loop_end\n #if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n bool clipped = true;\n #pragma unroll_loop_start\n for ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n plane = clippingPlanes[ i ];\n clipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n }\n #pragma unroll_loop_end\n if ( clipped ) discard;\n #endif\n#endif",$4c09f4f24c57a7cd$var$clipping_planes_pars_fragment="#if NUM_CLIPPING_PLANES > 0\n varying vec3 vClipPosition;\n uniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif",$4c09f4f24c57a7cd$var$clipping_planes_pars_vertex="#if NUM_CLIPPING_PLANES > 0\n varying vec3 vClipPosition;\n#endif",$4c09f4f24c57a7cd$var$clipping_planes_vertex="#if NUM_CLIPPING_PLANES > 0\n vClipPosition = - mvPosition.xyz;\n#endif",$4c09f4f24c57a7cd$var$color_fragment="#ifdef USE_COLOR\n diffuseColor.rgb *= vColor;\n#endif",$4c09f4f24c57a7cd$var$color_pars_fragment="#ifdef USE_COLOR\n varying vec3 vColor;\n#endif",$4c09f4f24c57a7cd$var$color_pars_vertex="#if defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n varying vec3 vColor;\n#endif",$4c09f4f24c57a7cd$var$color_vertex="#if defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n vColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n vColor.xyz *= color.xyz;\n#endif\n#ifdef USE_INSTANCING_COLOR\n vColor.xyz *= instanceColor.xyz;\n#endif",$4c09f4f24c57a7cd$var$common="#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n const highp float a = 12.9898, b = 78.233, c = 43758.5453;\n highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n return fract(sin(sn) * c);\n}\n#ifdef HIGH_PRECISION\n float precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n float max3( vec3 v ) { return max( max( v.x, v.y ), v.z ); }\n float precisionSafeLength( vec3 v ) {\n float maxComponent = max3( abs( v ) );\n return length( v / maxComponent ) * maxComponent;\n }\n#endif\nstruct IncidentLight {\n vec3 color;\n vec3 direction;\n bool visible;\n};\nstruct ReflectedLight {\n vec3 directDiffuse;\n vec3 directSpecular;\n vec3 indirectDiffuse;\n vec3 indirectSpecular;\n};\nstruct GeometricContext {\n vec3 position;\n vec3 normal;\n vec3 viewDir;\n#ifdef CLEARCOAT\n vec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n float distance = dot( planeNormal, point - pointOnPlane );\n return - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n return sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n return lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n mat3 tmp;\n tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n return tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n vec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n return dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n return m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n float u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n float v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n return vec2( u, v );\n}",$4c09f4f24c57a7cd$var$cube_uv_reflection_fragment="#ifdef ENVMAP_TYPE_CUBE_UV\n #define cubeUV_maxMipLevel 8.0\n #define cubeUV_minMipLevel 4.0\n #define cubeUV_maxTileSize 256.0\n #define cubeUV_minTileSize 16.0\n float getFace( vec3 direction ) {\n vec3 absDirection = abs( direction );\n float face = - 1.0;\n if ( absDirection.x > absDirection.z ) {\n if ( absDirection.x > absDirection.y )\n face = direction.x > 0.0 ? 0.0 : 3.0;\n else\n face = direction.y > 0.0 ? 1.0 : 4.0;\n } else {\n if ( absDirection.z > absDirection.y )\n face = direction.z > 0.0 ? 2.0 : 5.0;\n else\n face = direction.y > 0.0 ? 1.0 : 4.0;\n }\n return face;\n }\n vec2 getUV( vec3 direction, float face ) {\n vec2 uv;\n if ( face == 0.0 ) {\n uv = vec2( direction.z, direction.y ) / abs( direction.x );\n } else if ( face == 1.0 ) {\n uv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n } else if ( face == 2.0 ) {\n uv = vec2( - direction.x, direction.y ) / abs( direction.z );\n } else if ( face == 3.0 ) {\n uv = vec2( - direction.z, direction.y ) / abs( direction.x );\n } else if ( face == 4.0 ) {\n uv = vec2( - direction.x, direction.z ) / abs( direction.y );\n } else {\n uv = vec2( direction.x, direction.y ) / abs( direction.z );\n }\n return 0.5 * ( uv + 1.0 );\n }\n vec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n float face = getFace( direction );\n float filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n mipInt = max( mipInt, cubeUV_minMipLevel );\n float faceSize = exp2( mipInt );\n float texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n vec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n vec2 f = fract( uv );\n uv += 0.5 - f;\n if ( face > 2.0 ) {\n uv.y += faceSize;\n face -= 3.0;\n }\n uv.x += face * faceSize;\n if ( mipInt < cubeUV_maxMipLevel ) {\n uv.y += 2.0 * cubeUV_maxTileSize;\n }\n uv.y += filterInt * 2.0 * cubeUV_minTileSize;\n uv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n uv *= texelSize;\n vec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n uv.x += texelSize;\n vec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n uv.y += texelSize;\n vec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n uv.x -= texelSize;\n vec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n vec3 tm = mix( tl, tr, f.x );\n vec3 bm = mix( bl, br, f.x );\n return mix( tm, bm, f.y );\n }\n #define r0 1.0\n #define v0 0.339\n #define m0 - 2.0\n #define r1 0.8\n #define v1 0.276\n #define m1 - 1.0\n #define r4 0.4\n #define v4 0.046\n #define m4 2.0\n #define r5 0.305\n #define v5 0.016\n #define m5 3.0\n #define r6 0.21\n #define v6 0.0038\n #define m6 4.0\n float roughnessToMip( float roughness ) {\n float mip = 0.0;\n if ( roughness >= r1 ) {\n mip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n } else if ( roughness >= r4 ) {\n mip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n } else if ( roughness >= r5 ) {\n mip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n } else if ( roughness >= r6 ) {\n mip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n } else {\n mip = - 2.0 * log2( 1.16 * roughness ); }\n return mip;\n }\n vec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n float mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n float mipF = fract( mip );\n float mipInt = floor( mip );\n vec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n if ( mipF == 0.0 ) {\n return vec4( color0, 1.0 );\n } else {\n vec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n return vec4( mix( color0, color1, mipF ), 1.0 );\n }\n }\n#endif",$4c09f4f24c57a7cd$var$defaultnormal_vertex="vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n mat3 m = mat3( instanceMatrix );\n transformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n transformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n transformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n vec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n #ifdef FLIP_SIDED\n transformedTangent = - transformedTangent;\n #endif\n#endif",$4c09f4f24c57a7cd$var$displacementmap_pars_vertex="#ifdef USE_DISPLACEMENTMAP\n uniform sampler2D displacementMap;\n uniform float displacementScale;\n uniform float displacementBias;\n#endif",$4c09f4f24c57a7cd$var$displacementmap_vertex="#ifdef USE_DISPLACEMENTMAP\n transformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif",$4c09f4f24c57a7cd$var$emissivemap_fragment="#ifdef USE_EMISSIVEMAP\n vec4 emissiveColor = texture2D( emissiveMap, vUv );\n emissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n totalEmissiveRadiance *= emissiveColor.rgb;\n#endif",$4c09f4f24c57a7cd$var$emissivemap_pars_fragment="#ifdef USE_EMISSIVEMAP\n uniform sampler2D emissiveMap;\n#endif",$4c09f4f24c57a7cd$var$encodings_fragment="gl_FragColor = linearToOutputTexel( gl_FragColor );",$4c09f4f24c57a7cd$var$encodings_pars_fragment="\nvec4 LinearToLinear( in vec4 value ) {\n return value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n return vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n return vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n return vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n return vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n return vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n float maxComponent = max( max( value.r, value.g ), value.b );\n float fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n return vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n return vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n float maxRGB = max( value.r, max( value.g, value.b ) );\n float M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n M = ceil( M * 255.0 ) / 255.0;\n return vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n return vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n float maxRGB = max( value.r, max( value.g, value.b ) );\n float D = max( maxRange / maxRGB, 1.0 );\n D = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n return vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n vec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n Xp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n vec4 vResult;\n vResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n float Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n vResult.w = fract( Le );\n vResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n return vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n float Le = value.z * 255.0 + value.w;\n vec3 Xp_Y_XYZp;\n Xp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n Xp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n Xp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n vec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n return vec4( max( vRGB, 0.0 ), 1.0 );\n}",$4c09f4f24c57a7cd$var$envmap_fragment="#ifdef USE_ENVMAP\n #ifdef ENV_WORLDPOS\n vec3 cameraToFrag;\n if ( isOrthographic ) {\n cameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n } else {\n cameraToFrag = normalize( vWorldPosition - cameraPosition );\n }\n vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n #ifdef ENVMAP_MODE_REFLECTION\n vec3 reflectVec = reflect( cameraToFrag, worldNormal );\n #else\n vec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n #endif\n #else\n vec3 reflectVec = vReflect;\n #endif\n #ifdef ENVMAP_TYPE_CUBE\n vec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n #elif defined( ENVMAP_TYPE_CUBE_UV )\n vec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n #else\n vec4 envColor = vec4( 0.0 );\n #endif\n #ifndef ENVMAP_TYPE_CUBE_UV\n envColor = envMapTexelToLinear( envColor );\n #endif\n #ifdef ENVMAP_BLENDING_MULTIPLY\n outgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n #elif defined( ENVMAP_BLENDING_MIX )\n outgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n #elif defined( ENVMAP_BLENDING_ADD )\n outgoingLight += envColor.xyz * specularStrength * reflectivity;\n #endif\n#endif",$4c09f4f24c57a7cd$var$envmap_common_pars_fragment="#ifdef USE_ENVMAP\n uniform float envMapIntensity;\n uniform float flipEnvMap;\n uniform int maxMipLevel;\n #ifdef ENVMAP_TYPE_CUBE\n uniform samplerCube envMap;\n #else\n uniform sampler2D envMap;\n #endif\n \n#endif",$4c09f4f24c57a7cd$var$envmap_pars_fragment="#ifdef USE_ENVMAP\n uniform float reflectivity;\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n #define ENV_WORLDPOS\n #endif\n #ifdef ENV_WORLDPOS\n varying vec3 vWorldPosition;\n uniform float refractionRatio;\n #else\n varying vec3 vReflect;\n #endif\n#endif",$4c09f4f24c57a7cd$var$envmap_pars_vertex="#ifdef USE_ENVMAP\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n #define ENV_WORLDPOS\n #endif\n #ifdef ENV_WORLDPOS\n \n varying vec3 vWorldPosition;\n #else\n varying vec3 vReflect;\n uniform float refractionRatio;\n #endif\n#endif",$4c09f4f24c57a7cd$var$envmap_vertex="#ifdef USE_ENVMAP\n #ifdef ENV_WORLDPOS\n vWorldPosition = worldPosition.xyz;\n #else\n vec3 cameraToVertex;\n if ( isOrthographic ) {\n cameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n } else {\n cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n }\n vec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n #ifdef ENVMAP_MODE_REFLECTION\n vReflect = reflect( cameraToVertex, worldNormal );\n #else\n vReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n #endif\n #endif\n#endif",$4c09f4f24c57a7cd$var$fog_vertex="#ifdef USE_FOG\n fogDepth = - mvPosition.z;\n#endif",$4c09f4f24c57a7cd$var$fog_pars_vertex="#ifdef USE_FOG\n varying float fogDepth;\n#endif",$4c09f4f24c57a7cd$var$fog_fragment="#ifdef USE_FOG\n #ifdef FOG_EXP2\n float fogFactor = 1.0 - exp( - fogDensity * fogDensity * fogDepth * fogDepth );\n #else\n float fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n #endif\n gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif",$4c09f4f24c57a7cd$var$fog_pars_fragment="#ifdef USE_FOG\n uniform vec3 fogColor;\n varying float fogDepth;\n #ifdef FOG_EXP2\n uniform float fogDensity;\n #else\n uniform float fogNear;\n uniform float fogFar;\n #endif\n#endif",$4c09f4f24c57a7cd$var$gradientmap_pars_fragment="#ifdef USE_GRADIENTMAP\n uniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n float dotNL = dot( normal, lightDirection );\n vec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n #ifdef USE_GRADIENTMAP\n return texture2D( gradientMap, coord ).rgb;\n #else\n return ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n #endif\n}",$4c09f4f24c57a7cd$var$lightmap_fragment="#ifdef USE_LIGHTMAP\n vec4 lightMapTexel= texture2D( lightMap, vUv2 );\n reflectedLight.indirectDiffuse += PI * lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n#endif",$4c09f4f24c57a7cd$var$lightmap_pars_fragment="#ifdef USE_LIGHTMAP\n uniform sampler2D lightMap;\n uniform float lightMapIntensity;\n#endif",$4c09f4f24c57a7cd$var$lights_lambert_vertex="vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n vLightBack = vec3( 0.0 );\n vIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n vIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n vIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n getPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n #pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n getSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n #pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n getDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n #pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n vIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n #ifdef DOUBLE_SIDED\n vIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n #endif\n }\n #pragma unroll_loop_end\n#endif",$4c09f4f24c57a7cd$var$lights_pars_begin="uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n float x = normal.x, y = normal.y, z = normal.z;\n vec3 result = shCoefficients[ 0 ] * 0.886227;\n result += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n result += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n result += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n result += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n result += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n result += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n result += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n result += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n return result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n vec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n vec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n return irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n vec3 irradiance = ambientLightColor;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n return irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n struct DirectionalLight {\n vec3 direction;\n vec3 color;\n };\n uniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n void getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n directLight.color = directionalLight.color;\n directLight.direction = directionalLight.direction;\n directLight.visible = true;\n }\n#endif\n#if NUM_POINT_LIGHTS > 0\n struct PointLight {\n vec3 position;\n vec3 color;\n float distance;\n float decay;\n };\n uniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n void getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n vec3 lVector = pointLight.position - geometry.position;\n directLight.direction = normalize( lVector );\n float lightDistance = length( lVector );\n directLight.color = pointLight.color;\n directLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n directLight.visible = ( directLight.color != vec3( 0.0 ) );\n }\n#endif\n#if NUM_SPOT_LIGHTS > 0\n struct SpotLight {\n vec3 position;\n vec3 direction;\n vec3 color;\n float distance;\n float decay;\n float coneCos;\n float penumbraCos;\n };\n uniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n void getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n vec3 lVector = spotLight.position - geometry.position;\n directLight.direction = normalize( lVector );\n float lightDistance = length( lVector );\n float angleCos = dot( directLight.direction, spotLight.direction );\n if ( angleCos > spotLight.coneCos ) {\n float spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n directLight.color = spotLight.color;\n directLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n directLight.visible = true;\n } else {\n directLight.color = vec3( 0.0 );\n directLight.visible = false;\n }\n }\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n struct RectAreaLight {\n vec3 color;\n vec3 position;\n vec3 halfWidth;\n vec3 halfHeight;\n };\n uniform sampler2D ltc_1; uniform sampler2D ltc_2;\n uniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n struct HemisphereLight {\n vec3 direction;\n vec3 skyColor;\n vec3 groundColor;\n };\n uniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n float dotNL = dot( geometry.normal, hemiLight.direction );\n float hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n vec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n return irradiance;\n }\n#endif",$4c09f4f24c57a7cd$var$envmap_physical_pars_fragment="#if defined( USE_ENVMAP )\n #ifdef ENVMAP_MODE_REFRACTION\n uniform float refractionRatio;\n #endif\n vec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n vec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n #ifdef ENVMAP_TYPE_CUBE\n vec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n #else\n vec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n #endif\n envMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n #elif defined( ENVMAP_TYPE_CUBE_UV )\n vec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n #else\n vec4 envMapColor = vec4( 0.0 );\n #endif\n return PI * envMapColor.rgb * envMapIntensity;\n }\n float getSpecularMIPLevel( const in float roughness, const in int maxMIPLevel ) {\n float maxMIPLevelScalar = float( maxMIPLevel );\n float sigma = PI * roughness * roughness / ( 1.0 + roughness );\n float desiredMIPLevel = maxMIPLevelScalar + log2( sigma );\n return clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n }\n vec3 getLightProbeIndirectRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in int maxMIPLevel ) {\n #ifdef ENVMAP_MODE_REFLECTION\n vec3 reflectVec = reflect( -viewDir, normal );\n reflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n #else\n vec3 reflectVec = refract( -viewDir, normal, refractionRatio );\n #endif\n reflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n float specularMIPLevel = getSpecularMIPLevel( roughness, maxMIPLevel );\n #ifdef ENVMAP_TYPE_CUBE\n vec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n #else\n vec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n #endif\n envMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n #elif defined( ENVMAP_TYPE_CUBE_UV )\n vec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n #endif\n return envMapColor.rgb * envMapIntensity;\n }\n#endif",$4c09f4f24c57a7cd$var$lights_toon_fragment="ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;",$4c09f4f24c57a7cd$var$lights_toon_pars_fragment="varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\nstruct ToonMaterial {\n vec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n vec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n reflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct RE_Direct_Toon\n#define RE_IndirectDiffuse RE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material ) (0)",$4c09f4f24c57a7cd$var$lights_phong_fragment="BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;",$4c09f4f24c57a7cd$var$lights_phong_pars_fragment="varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n vec3 diffuseColor;\n vec3 specularColor;\n float specularShininess;\n float specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n vec3 irradiance = dotNL * directLight.color;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n reflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n reflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct RE_Direct_BlinnPhong\n#define RE_IndirectDiffuse RE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material ) (0)",$4c09f4f24c57a7cd$var$lights_physical_fragment="PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.specularRoughness = max( roughnessFactor, 0.0525 );material.specularRoughness += geometryRoughness;\nmaterial.specularRoughness = min( material.specularRoughness, 1.0 );\n#ifdef REFLECTIVITY\n material.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n#else\n material.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#endif\n#ifdef CLEARCOAT\n material.clearcoat = clearcoat;\n material.clearcoatRoughness = clearcoatRoughness;\n #ifdef USE_CLEARCOATMAP\n material.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n #endif\n #ifdef USE_CLEARCOAT_ROUGHNESSMAP\n material.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n #endif\n material.clearcoat = saturate( material.clearcoat ); material.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n material.clearcoatRoughness += geometryRoughness;\n material.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n material.sheenColor = sheen;\n#endif",$4c09f4f24c57a7cd$var$lights_physical_pars_fragment="struct PhysicalMaterial {\n vec3 diffuseColor;\n float specularRoughness;\n vec3 specularColor;\n#ifdef CLEARCOAT\n float clearcoat;\n float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n vec3 sheenColor;\n#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearcoatDHRApprox( const in float roughness, const in float dotNL ) {\n return DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n void RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n vec3 normal = geometry.normal;\n vec3 viewDir = geometry.viewDir;\n vec3 position = geometry.position;\n vec3 lightPos = rectAreaLight.position;\n vec3 halfWidth = rectAreaLight.halfWidth;\n vec3 halfHeight = rectAreaLight.halfHeight;\n vec3 lightColor = rectAreaLight.color;\n float roughness = material.specularRoughness;\n vec3 rectCoords[ 4 ];\n rectCoords[ 0 ] = lightPos + halfWidth - halfHeight; rectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n rectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n rectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n vec2 uv = LTC_Uv( normal, viewDir, roughness );\n vec4 t1 = texture2D( ltc_1, uv );\n vec4 t2 = texture2D( ltc_2, uv );\n mat3 mInv = mat3(\n vec3( t1.x, 0, t1.y ),\n vec3( 0, 1, 0 ),\n vec3( t1.z, 0, t1.w )\n );\n vec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n reflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n reflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n }\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n vec3 irradiance = dotNL * directLight.color;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n #ifdef CLEARCOAT\n float ccDotNL = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n vec3 ccIrradiance = ccDotNL * directLight.color;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n ccIrradiance *= PI;\n #endif\n float clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n reflectedLight.directSpecular += ccIrradiance * material.clearcoat * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n #else\n float clearcoatDHR = 0.0;\n #endif\n #ifdef USE_SHEEN\n reflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_Sheen(\n material.specularRoughness,\n directLight.direction,\n geometry,\n material.sheenColor\n );\n #else\n reflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularRoughness);\n #endif\n reflectedLight.directDiffuse += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n #ifdef CLEARCOAT\n float ccDotNV = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n reflectedLight.indirectSpecular += clearcoatRadiance * material.clearcoat * BRDF_Specular_GGX_Environment( geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n float ccDotNL = ccDotNV;\n float clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n #else\n float clearcoatDHR = 0.0;\n #endif\n float clearcoatInv = 1.0 - clearcoatDHR;\n vec3 singleScattering = vec3( 0.0 );\n vec3 multiScattering = vec3( 0.0 );\n vec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n BRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering );\n vec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n reflectedLight.indirectSpecular += clearcoatInv * radiance * singleScattering;\n reflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n reflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct RE_Direct_Physical\n#define RE_Direct_RectArea RE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse RE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular RE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n return saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}",$4c09f4f24c57a7cd$var$lights_fragment_begin="\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef CLEARCOAT\n geometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n PointLight pointLight;\n #if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n PointLightShadow pointLightShadow;\n #endif\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n pointLight = pointLights[ i ];\n getPointDirectLightIrradiance( pointLight, geometry, directLight );\n #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n pointLightShadow = pointLightShadows[ i ];\n directLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n #pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n SpotLight spotLight;\n #if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n SpotLightShadow spotLightShadow;\n #endif\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n spotLight = spotLights[ i ];\n getSpotDirectLightIrradiance( spotLight, geometry, directLight );\n #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n spotLightShadow = spotLightShadows[ i ];\n directLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n #pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n DirectionalLight directionalLight;\n #if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n DirectionalLightShadow directionalLightShadow;\n #endif\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n directionalLight = directionalLights[ i ];\n getDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n directionalLightShadow = directionalLightShadows[ i ];\n directLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n #pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n RectAreaLight rectAreaLight;\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n rectAreaLight = rectAreaLights[ i ];\n RE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n }\n #pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n vec3 iblIrradiance = vec3( 0.0 );\n vec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n irradiance += getLightProbeIrradiance( lightProbe, geometry );\n #if ( NUM_HEMI_LIGHTS > 0 )\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n irradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n }\n #pragma unroll_loop_end\n #endif\n#endif\n#if defined( RE_IndirectSpecular )\n vec3 radiance = vec3( 0.0 );\n vec3 clearcoatRadiance = vec3( 0.0 );\n#endif",$4c09f4f24c57a7cd$var$lights_fragment_maps="#if defined( RE_IndirectDiffuse )\n #ifdef USE_LIGHTMAP\n vec4 lightMapTexel= texture2D( lightMap, vUv2 );\n vec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n lightMapIrradiance *= PI;\n #endif\n irradiance += lightMapIrradiance;\n #endif\n #if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n iblIrradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n #endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n radiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.normal, material.specularRoughness, maxMipLevel );\n #ifdef CLEARCOAT\n clearcoatRadiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness, maxMipLevel );\n #endif\n#endif",$4c09f4f24c57a7cd$var$lights_fragment_end="#if defined( RE_IndirectDiffuse )\n RE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n RE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif",$4c09f4f24c57a7cd$var$logdepthbuf_fragment="#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n gl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif",$4c09f4f24c57a7cd$var$logdepthbuf_pars_fragment="#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n uniform float logDepthBufFC;\n varying float vFragDepth;\n varying float vIsPerspective;\n#endif",$4c09f4f24c57a7cd$var$logdepthbuf_pars_vertex="#ifdef USE_LOGDEPTHBUF\n #ifdef USE_LOGDEPTHBUF_EXT\n varying float vFragDepth;\n varying float vIsPerspective;\n #else\n uniform float logDepthBufFC;\n #endif\n#endif",$4c09f4f24c57a7cd$var$logdepthbuf_vertex="#ifdef USE_LOGDEPTHBUF\n #ifdef USE_LOGDEPTHBUF_EXT\n vFragDepth = 1.0 + gl_Position.w;\n vIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n #else\n if ( isPerspectiveMatrix( projectionMatrix ) ) {\n gl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n gl_Position.z *= gl_Position.w;\n }\n #endif\n#endif",$4c09f4f24c57a7cd$var$map_fragment="#ifdef USE_MAP\n vec4 texelColor = texture2D( map, vUv );\n texelColor = mapTexelToLinear( texelColor );\n diffuseColor *= texelColor;\n#endif",$4c09f4f24c57a7cd$var$map_pars_fragment="#ifdef USE_MAP\n uniform sampler2D map;\n#endif",$4c09f4f24c57a7cd$var$map_particle_fragment="#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n vec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n vec4 mapTexel = texture2D( map, uv );\n diffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n diffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif",$4c09f4f24c57a7cd$var$map_particle_pars_fragment="#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n uniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n uniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n uniform sampler2D alphaMap;\n#endif",$4c09f4f24c57a7cd$var$metalnessmap_fragment="float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n vec4 texelMetalness = texture2D( metalnessMap, vUv );\n metalnessFactor *= texelMetalness.b;\n#endif",$4c09f4f24c57a7cd$var$metalnessmap_pars_fragment="#ifdef USE_METALNESSMAP\n uniform sampler2D metalnessMap;\n#endif",$4c09f4f24c57a7cd$var$morphnormal_vertex="#ifdef USE_MORPHNORMALS\n objectNormal *= morphTargetBaseInfluence;\n objectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n objectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n objectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n objectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif",$4c09f4f24c57a7cd$var$morphtarget_pars_vertex="#ifdef USE_MORPHTARGETS\n uniform float morphTargetBaseInfluence;\n #ifndef USE_MORPHNORMALS\n uniform float morphTargetInfluences[ 8 ];\n #else\n uniform float morphTargetInfluences[ 4 ];\n #endif\n#endif",$4c09f4f24c57a7cd$var$morphtarget_vertex="#ifdef USE_MORPHTARGETS\n transformed *= morphTargetBaseInfluence;\n transformed += morphTarget0 * morphTargetInfluences[ 0 ];\n transformed += morphTarget1 * morphTargetInfluences[ 1 ];\n transformed += morphTarget2 * morphTargetInfluences[ 2 ];\n transformed += morphTarget3 * morphTargetInfluences[ 3 ];\n #ifndef USE_MORPHNORMALS\n transformed += morphTarget4 * morphTargetInfluences[ 4 ];\n transformed += morphTarget5 * morphTargetInfluences[ 5 ];\n transformed += morphTarget6 * morphTargetInfluences[ 6 ];\n transformed += morphTarget7 * morphTargetInfluences[ 7 ];\n #endif\n#endif",$4c09f4f24c57a7cd$var$normal_fragment_begin="#ifdef FLAT_SHADED\n vec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n vec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n vec3 normal = normalize( cross( fdx, fdy ) );\n#else\n vec3 normal = normalize( vNormal );\n #ifdef DOUBLE_SIDED\n normal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #endif\n #ifdef USE_TANGENT\n vec3 tangent = normalize( vTangent );\n vec3 bitangent = normalize( vBitangent );\n #ifdef DOUBLE_SIDED\n tangent = tangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n bitangent = bitangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #endif\n #if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n mat3 vTBN = mat3( tangent, bitangent, normal );\n #endif\n #endif\n#endif\nvec3 geometryNormal = normal;",$4c09f4f24c57a7cd$var$normal_fragment_maps="#ifdef OBJECTSPACE_NORMALMAP\n normal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n #ifdef FLIP_SIDED\n normal = - normal;\n #endif\n #ifdef DOUBLE_SIDED\n normal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #endif\n normal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n vec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n mapN.xy *= normalScale;\n #ifdef USE_TANGENT\n normal = normalize( vTBN * mapN );\n #else\n normal = perturbNormal2Arb( -vViewPosition, normal, mapN );\n #endif\n#elif defined( USE_BUMPMAP )\n normal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif",$4c09f4f24c57a7cd$var$normalmap_pars_fragment="#ifdef USE_NORMALMAP\n uniform sampler2D normalMap;\n uniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n uniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n vec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN ) {\n vec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n vec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n vec2 st0 = dFdx( vUv.st );\n vec2 st1 = dFdy( vUv.st );\n float scale = sign( st1.t * st0.s - st0.t * st1.s );\n vec3 S = normalize( ( q0 * st1.t - q1 * st0.t ) * scale );\n vec3 T = normalize( ( - q0 * st1.s + q1 * st0.s ) * scale );\n vec3 N = normalize( surf_norm );\n mat3 tsn = mat3( S, T, N );\n mapN.xy *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n return normalize( tsn * mapN );\n }\n#endif",$4c09f4f24c57a7cd$var$clearcoat_normal_fragment_begin="#ifdef CLEARCOAT\n vec3 clearcoatNormal = geometryNormal;\n#endif",$4c09f4f24c57a7cd$var$clearcoat_normal_fragment_maps="#ifdef USE_CLEARCOAT_NORMALMAP\n vec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n clearcoatMapN.xy *= clearcoatNormalScale;\n #ifdef USE_TANGENT\n clearcoatNormal = normalize( vTBN * clearcoatMapN );\n #else\n clearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN );\n #endif\n#endif",$4c09f4f24c57a7cd$var$clearcoat_pars_fragment="#ifdef USE_CLEARCOATMAP\n uniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n uniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n uniform sampler2D clearcoatNormalMap;\n uniform vec2 clearcoatNormalScale;\n#endif",$4c09f4f24c57a7cd$var$packing="vec3 packNormalToRGB( const in vec3 normal ) {\n return normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n return 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n vec4 r = vec4( fract( v * PackFactors ), v );\n r.yzw -= r.xyz * ShiftRight8; return r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n return dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n vec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));\n return vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n return vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n return ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n return linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n return (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n return ( near * far ) / ( ( far - near ) * invClipZ - far );\n}",$4c09f4f24c57a7cd$var$premultiplied_alpha_fragment="#ifdef PREMULTIPLIED_ALPHA\n gl_FragColor.rgb *= gl_FragColor.a;\n#endif",$4c09f4f24c57a7cd$var$project_vertex="vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n mvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;",$4c09f4f24c57a7cd$var$dithering_fragment="#ifdef DITHERING\n gl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif",$4c09f4f24c57a7cd$var$dithering_pars_fragment="#ifdef DITHERING\n vec3 dithering( vec3 color ) {\n float grid_position = rand( gl_FragCoord.xy );\n vec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n dither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n return color + dither_shift_RGB;\n }\n#endif",$4c09f4f24c57a7cd$var$roughnessmap_fragment="float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n vec4 texelRoughness = texture2D( roughnessMap, vUv );\n roughnessFactor *= texelRoughness.g;\n#endif",$4c09f4f24c57a7cd$var$roughnessmap_pars_fragment="#ifdef USE_ROUGHNESSMAP\n uniform sampler2D roughnessMap;\n#endif",$4c09f4f24c57a7cd$var$shadowmap_pars_fragment="#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHT_SHADOWS > 0\n uniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n struct DirectionalLightShadow {\n float shadowBias;\n float shadowNormalBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n #endif\n #if NUM_SPOT_LIGHT_SHADOWS > 0\n uniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n varying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n struct SpotLightShadow {\n float shadowBias;\n float shadowNormalBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n #endif\n #if NUM_POINT_LIGHT_SHADOWS > 0\n uniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n struct PointLightShadow {\n float shadowBias;\n float shadowNormalBias;\n float shadowRadius;\n vec2 shadowMapSize;\n float shadowCameraNear;\n float shadowCameraFar;\n };\n uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n #endif\n float texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n return step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n }\n vec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n return unpackRGBATo2Half( texture2D( shadow, uv ) );\n }\n float VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n float occlusion = 1.0;\n vec2 distribution = texture2DDistribution( shadow, uv );\n float hard_shadow = step( compare , distribution.x );\n if (hard_shadow != 1.0 ) {\n float distance = compare - distribution.x ;\n float variance = max( 0.00000, distribution.y * distribution.y );\n float softness_probability = variance / (variance + distance * distance ); softness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 ); occlusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n }\n return occlusion;\n }\n float getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n float shadow = 1.0;\n shadowCoord.xyz /= shadowCoord.w;\n shadowCoord.z += shadowBias;\n bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n bool inFrustum = all( inFrustumVec );\n bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n bool frustumTest = all( frustumTestVec );\n if ( frustumTest ) {\n #if defined( SHADOWMAP_TYPE_PCF )\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n float dx0 = - texelSize.x * shadowRadius;\n float dy0 = - texelSize.y * shadowRadius;\n float dx1 = + texelSize.x * shadowRadius;\n float dy1 = + texelSize.y * shadowRadius;\n float dx2 = dx0 / 2.0;\n float dy2 = dy0 / 2.0;\n float dx3 = dx1 / 2.0;\n float dy3 = dy1 / 2.0;\n shadow = (\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n ) * ( 1.0 / 17.0 );\n #elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n float dx = texelSize.x;\n float dy = texelSize.y;\n vec2 uv = shadowCoord.xy;\n vec2 f = fract( uv * shadowMapSize + 0.5 );\n uv -= f * texelSize;\n shadow = (\n texture2DCompare( shadowMap, uv, shadowCoord.z ) +\n texture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n texture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n mix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n f.x ) +\n mix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n f.x ) +\n mix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n f.y ) +\n mix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n f.y ) +\n mix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n f.x ),\n mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n f.x ),\n f.y )\n ) * ( 1.0 / 9.0 );\n #elif defined( SHADOWMAP_TYPE_VSM )\n shadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n #else\n shadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n #endif\n }\n return shadow;\n }\n vec2 cubeToUV( vec3 v, float texelSizeY ) {\n vec3 absV = abs( v );\n float scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n absV *= scaleToCube;\n v *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n vec2 planar = v.xy;\n float almostATexel = 1.5 * texelSizeY;\n float almostOne = 1.0 - almostATexel;\n if ( absV.z >= almostOne ) {\n if ( v.z > 0.0 )\n planar.x = 4.0 - v.x;\n } else if ( absV.x >= almostOne ) {\n float signX = sign( v.x );\n planar.x = v.z * signX + 2.0 * signX;\n } else if ( absV.y >= almostOne ) {\n float signY = sign( v.y );\n planar.x = v.x + 2.0 * signY + 2.0;\n planar.y = v.z * signY - 2.0;\n }\n return vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n }\n float getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n vec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n vec3 lightToPosition = shadowCoord.xyz;\n float dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear ); dp += shadowBias;\n vec3 bd3D = normalize( lightToPosition );\n #if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n vec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n return (\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n ) * ( 1.0 / 9.0 );\n #else\n return texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n #endif\n }\n#endif",$4c09f4f24c57a7cd$var$shadowmap_pars_vertex="#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHT_SHADOWS > 0\n uniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n struct DirectionalLightShadow {\n float shadowBias;\n float shadowNormalBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n #endif\n #if NUM_SPOT_LIGHT_SHADOWS > 0\n uniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n varying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n struct SpotLightShadow {\n float shadowBias;\n float shadowNormalBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n #endif\n #if NUM_POINT_LIGHT_SHADOWS > 0\n uniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n struct PointLightShadow {\n float shadowBias;\n float shadowNormalBias;\n float shadowRadius;\n vec2 shadowMapSize;\n float shadowCameraNear;\n float shadowCameraFar;\n };\n uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n #endif\n#endif",$4c09f4f24c57a7cd$var$shadowmap_vertex="#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n vec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n vec4 shadowWorldPosition;\n #endif\n #if NUM_DIR_LIGHT_SHADOWS > 0\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n vDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n }\n #pragma unroll_loop_end\n #endif\n #if NUM_SPOT_LIGHT_SHADOWS > 0\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n vSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n }\n #pragma unroll_loop_end\n #endif\n #if NUM_POINT_LIGHT_SHADOWS > 0\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n vPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n }\n #pragma unroll_loop_end\n #endif\n#endif",$4c09f4f24c57a7cd$var$shadowmask_pars_fragment="float getShadowMask() {\n float shadow = 1.0;\n #ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHT_SHADOWS > 0\n DirectionalLightShadow directionalLight;\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n directionalLight = directionalLightShadows[ i ];\n shadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n }\n #pragma unroll_loop_end\n #endif\n #if NUM_SPOT_LIGHT_SHADOWS > 0\n SpotLightShadow spotLight;\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n spotLight = spotLightShadows[ i ];\n shadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n }\n #pragma unroll_loop_end\n #endif\n #if NUM_POINT_LIGHT_SHADOWS > 0\n PointLightShadow pointLight;\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n pointLight = pointLightShadows[ i ];\n shadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n }\n #pragma unroll_loop_end\n #endif\n #endif\n return shadow;\n}",$4c09f4f24c57a7cd$var$skinbase_vertex="#ifdef USE_SKINNING\n mat4 boneMatX = getBoneMatrix( skinIndex.x );\n mat4 boneMatY = getBoneMatrix( skinIndex.y );\n mat4 boneMatZ = getBoneMatrix( skinIndex.z );\n mat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif",$4c09f4f24c57a7cd$var$skinning_pars_vertex="#ifdef USE_SKINNING\n uniform mat4 bindMatrix;\n uniform mat4 bindMatrixInverse;\n #ifdef BONE_TEXTURE\n uniform highp sampler2D boneTexture;\n uniform int boneTextureSize;\n mat4 getBoneMatrix( const in float i ) {\n float j = i * 4.0;\n float x = mod( j, float( boneTextureSize ) );\n float y = floor( j / float( boneTextureSize ) );\n float dx = 1.0 / float( boneTextureSize );\n float dy = 1.0 / float( boneTextureSize );\n y = dy * ( y + 0.5 );\n vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n mat4 bone = mat4( v1, v2, v3, v4 );\n return bone;\n }\n #else\n uniform mat4 boneMatrices[ MAX_BONES ];\n mat4 getBoneMatrix( const in float i ) {\n mat4 bone = boneMatrices[ int(i) ];\n return bone;\n }\n #endif\n#endif",$4c09f4f24c57a7cd$var$skinning_vertex="#ifdef USE_SKINNING\n vec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n vec4 skinned = vec4( 0.0 );\n skinned += boneMatX * skinVertex * skinWeight.x;\n skinned += boneMatY * skinVertex * skinWeight.y;\n skinned += boneMatZ * skinVertex * skinWeight.z;\n skinned += boneMatW * skinVertex * skinWeight.w;\n transformed = ( bindMatrixInverse * skinned ).xyz;\n#endif",$4c09f4f24c57a7cd$var$skinnormal_vertex="#ifdef USE_SKINNING\n mat4 skinMatrix = mat4( 0.0 );\n skinMatrix += skinWeight.x * boneMatX;\n skinMatrix += skinWeight.y * boneMatY;\n skinMatrix += skinWeight.z * boneMatZ;\n skinMatrix += skinWeight.w * boneMatW;\n skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n objectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n #ifdef USE_TANGENT\n objectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n #endif\n#endif",$4c09f4f24c57a7cd$var$specularmap_fragment="float specularStrength;\n#ifdef USE_SPECULARMAP\n vec4 texelSpecular = texture2D( specularMap, vUv );\n specularStrength = texelSpecular.r;\n#else\n specularStrength = 1.0;\n#endif",$4c09f4f24c57a7cd$var$specularmap_pars_fragment="#ifdef USE_SPECULARMAP\n uniform sampler2D specularMap;\n#endif",$4c09f4f24c57a7cd$var$tonemapping_fragment="#if defined( TONE_MAPPING )\n gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif",$4c09f4f24c57a7cd$var$tonemapping_pars_fragment="#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n return toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n return saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n color = max( vec3( 0.0 ), color - 0.004 );\n return pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n vec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n vec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n return a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n const mat3 ACESInputMat = mat3(\n vec3( 0.59719, 0.07600, 0.02840 ), vec3( 0.35458, 0.90834, 0.13383 ),\n vec3( 0.04823, 0.01566, 0.83777 )\n );\n const mat3 ACESOutputMat = mat3(\n vec3( 1.60475, -0.10208, -0.00327 ), vec3( -0.53108, 1.10813, -0.07276 ),\n vec3( -0.07367, -0.00605, 1.07602 )\n );\n color *= toneMappingExposure / 0.6;\n color = ACESInputMat * color;\n color = RRTAndODTFit( color );\n color = ACESOutputMat * color;\n return saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }",$4c09f4f24c57a7cd$var$transmissionmap_fragment="#ifdef USE_TRANSMISSIONMAP\n totalTransmission *= texture2D( transmissionMap, vUv ).r;\n#endif",$4c09f4f24c57a7cd$var$transmissionmap_pars_fragment="#ifdef USE_TRANSMISSIONMAP\n uniform sampler2D transmissionMap;\n#endif",$4c09f4f24c57a7cd$var$uv_pars_fragment="#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n varying vec2 vUv;\n#endif",$4c09f4f24c57a7cd$var$uv_pars_vertex="#ifdef USE_UV\n #ifdef UVS_VERTEX_ONLY\n vec2 vUv;\n #else\n varying vec2 vUv;\n #endif\n uniform mat3 uvTransform;\n#endif",$4c09f4f24c57a7cd$var$uv_vertex="#ifdef USE_UV\n vUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif",$4c09f4f24c57a7cd$var$uv2_pars_fragment="#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n varying vec2 vUv2;\n#endif",$4c09f4f24c57a7cd$var$uv2_pars_vertex="#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n attribute vec2 uv2;\n varying vec2 vUv2;\n uniform mat3 uv2Transform;\n#endif",$4c09f4f24c57a7cd$var$uv2_vertex="#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n vUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif",$4c09f4f24c57a7cd$var$worldpos_vertex="#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )\n vec4 worldPosition = vec4( transformed, 1.0 );\n #ifdef USE_INSTANCING\n worldPosition = instanceMatrix * worldPosition;\n #endif\n worldPosition = modelMatrix * worldPosition;\n#endif",$4c09f4f24c57a7cd$var$background_frag="uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n vec4 texColor = texture2D( t2D, vUv );\n gl_FragColor = mapTexelToLinear( texColor );\n #include \n #include \n}",$4c09f4f24c57a7cd$var$background_vert="varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n vUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n gl_Position = vec4( position.xy, 1.0, 1.0 );\n}",$4c09f4f24c57a7cd$var$cube_frag="#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n vec3 vReflect = vWorldDirection;\n #include \n gl_FragColor = envColor;\n gl_FragColor.a *= opacity;\n #include \n #include \n}",$4c09f4f24c57a7cd$var$cube_vert="varying vec3 vWorldDirection;\n#include \nvoid main() {\n vWorldDirection = transformDirection( position, modelMatrix );\n #include \n #include \n gl_Position.z = gl_Position.w;\n}",$4c09f4f24c57a7cd$var$depth_frag="#if DEPTH_PACKING == 3200\n uniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n #include \n vec4 diffuseColor = vec4( 1.0 );\n #if DEPTH_PACKING == 3200\n diffuseColor.a = opacity;\n #endif\n #include \n #include \n #include \n #include \n float fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n #if DEPTH_PACKING == 3200\n gl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n #elif DEPTH_PACKING == 3201\n gl_FragColor = packDepthToRGBA( fragCoordZ );\n #endif\n}",$4c09f4f24c57a7cd$var$depth_vert="#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n #include \n #include \n #ifdef USE_DISPLACEMENTMAP\n #include \n #include \n #include \n #endif\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vHighPrecisionZW = gl_Position.zw;\n}",$4c09f4f24c57a7cd$var$distanceRGBA_frag="#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n #include \n vec4 diffuseColor = vec4( 1.0 );\n #include \n #include \n #include \n float dist = length( vWorldPosition - referencePosition );\n dist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n dist = saturate( dist );\n gl_FragColor = packDepthToRGBA( dist );\n}",$4c09f4f24c57a7cd$var$distanceRGBA_vert="#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #ifdef USE_DISPLACEMENTMAP\n #include \n #include \n #include \n #endif\n #include \n #include \n #include \n #include